If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+36u=0
a = 6; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·6·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*6}=\frac{-72}{12} =-6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*6}=\frac{0}{12} =0 $
| d/10+780+d/8=1,020 | | 22=-u/6 | | -13-8a=-3a+3-7a | | -48+48x=12 | | (11*x)-7+(4*x)-4=0 | | (2x-5)=(x-4)= | | 2.5(n+4)=n+1.5n−7 | | 7x6=5x5+12 | | 1650=480+19.50k | | 12=9z+18 | | -14+12+x=-2 | | r-5+2r=13 | | 3x+2x+4=5x-2 | | 2n-2n+4n=8 | | 2x+4-4x=16 | | 3(-2x+4)=-6x-12 | | 1/2(n=4)-7=-2n+6 | | -3x=1/2+1/3 | | 92=-4(8x-2) | | 30x-100=22x÷1 | | 90/x=45 | | 7w+w-8w+2w-w=1 | | 4(2x-3)=8x-12 | | 3=b/14 | | 9832424x=2 | | 10(g+5)=2g+9) | | 32=w/5+17 | | 5x-(x-18)-6=-2(x+15) | | ⅔x-5=9 | | 1/2(4x-5)-13=4 | | -8+16x=16x-8 | | 36+5x-x2^=0 |